Ground state sign-changing solutions for the Chern-Simons-Schrödinger equation with zero mass potential

نویسندگان

چکیده

This paper is concerned with the following nonlinear Chern-Simons-Schrödinger equation zero mass potential $ \begin{align} -\Delta u+\lambda\left(\frac{h_u^2(|x|)}{|x|^2}+\int^{\infty}_{|x|}\frac{h_u(s)}{s}u^2(s)ds\right)u = -a|u|^{p-2}u+f(u),\ \ x\in\mathbb{R}^2, \end{align} where a, \lambda>0 $, p\in (2,3) and$ h_u(s) \int^s_0\frac{\tau}{2}u^2(\tau)d\tau \frac{1}{4\pi}\int_{B_s}u^2(x)dx $is so-called Chern-Simons term, f has subcritical exponential growth in sense of Trudinger-Moser. Under some wild assumptions on combining Trudinger-Moser inequality, Non-Nehari manifold method and constraint minimization argument, we establish existence a ground state sign-changing solution u_{\lambda} for above equation, corresponding energy strictly larger than twice that solutions Nehari-type. Moreover, obtain convergence property as parameter \lambda \searrow 0 $. Our theorems extend results Xie Chen [Appl. Anal., 99 (2020), 880-898], Kang, Li Tang [Bull. Malays. Math. Sci. Soc., 44 (2021), 711-731] Shen [Complex Var. Elliptic Equ., 67 (2022), 1186-1203].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Condensate of Solutions for the Chern-simons-higgs Equation

This is the first part of our comprehensive study on the structure of doubly periodic solutions for the Chern-Simons-Higgs equation with a small coupling constant. We first classify the bubbling type of the blow-up point according to the limit equations. Assuming that all the blow-up points are away from the vortex points, we prove the noncoexistence of different bubbling types in a sequence of...

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

2 Maxwell - Chern - Simons - Higgs Mechanism in the Schrödinger Representation

This paper discusses the phenomenon of spontaneous symmetry breaking in the Schrödinger representation formulation of quantum field theory. The analysis is presented for three-dimensional space-time abelian gauge theories with either Maxwell, Maxwell-Chern-Simons, or pure Chern-Simons terms as the gauge field contribution to the action, each of which leads to a different form of mass generation...

متن کامل

Ground State Solutions for Semilinear Elliptic Equations with Zero Mass in R

In this article, we study the semilinear elliptic equation −∆u = |u|p(x)−2u, x ∈ R u ∈ D(R ), where N ≥ 3, p(x) = ( p, x ∈ Ω 2∗, x 6∈ Ω, with 2 < p < 2∗ := 2N/(N − 2), Ω ⊂ RN is a bounded set with nonempty interior. By using the Nehari manifold, we obtain a positive ground state solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2023

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2023137